Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
Abstract:In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
Abstract:Within the domain of large language models, reinforcement fine-tuning algorithms necessitate the generation of a complete reasoning trajectory beginning from the input query, which incurs significant computational overhead during the rollout phase of training. To address this issue, we analyze the impact of different segments of the reasoning path on the correctness of the final result and, based on these insights, propose Reinforcement Fine-Tuning with Partial Reasoning Optimization (RPO), a plug-and-play reinforcement fine-tuning algorithm. Unlike traditional reinforcement fine-tuning algorithms that generate full reasoning paths, RPO trains the model by generating suffixes of the reasoning path using experience cache. During the rollout phase of training, RPO reduces token generation in this phase by approximately 95%, greatly lowering the theoretical time overhead. Compared with full-path reinforcement fine-tuning algorithms, RPO reduces the training time of the 1.5B model by 90% and the 7B model by 72%. At the same time, it can be integrated with typical algorithms such as GRPO and DAPO, enabling them to achieve training acceleration while maintaining performance comparable to the original algorithms. Our code is open-sourced at https://github.com/yhz5613813/RPO.
Abstract:In recent years, multimodal image editing models have achieved substantial progress, enabling users to manipulate visual content through natural language in a flexible and interactive manner. Nevertheless, an important yet insufficiently explored research direction remains visual document image editing, which involves modifying textual content within images while faithfully preserving the original text style and background context. Existing approaches, including AnyText, GlyphControl, and TextCtrl, predominantly focus on English-language scenarios and documents with relatively sparse textual layouts, thereby failing to adequately address dense, structurally complex documents or non-Latin scripts such as Chinese. To bridge this gap, we propose \textbf{V}isual \textbf{D}oc \textbf{E}dit Bench(VDE Bench), a rigorously human-annotated and evaluated benchmark specifically designed to assess image editing models on multilingual and complex visual document editing tasks. The benchmark comprises a high-quality dataset encompassing densely textual documents in both English and Chinese, including academic papers, posters, presentation slides, examination materials, and newspapers. Furthermore, we introduce a decoupled evaluation framework that systematically quantifies editing performance at the OCR parsing level, enabling fine-grained assessment of text modification accuracy. Based on this benchmark, we conduct a comprehensive evaluation of representative state-of-the-art image editing models. Manual verification demonstrates a strong consistency between human judgments and automated evaluation metrics. VDE Bench constitutes the first systematic benchmark for evaluating image editing models on multilingual and densely textual visual documents.
Abstract:Running up stairs is effortless for humans but remains extremely challenging for humanoid robots due to the simultaneous requirements of high agility and strict stability. Model-free reinforcement learning (RL) can generate dynamic locomotion, yet implicit stability rewards and heavy reliance on task-specific reward shaping tend to result in unsafe behaviors, especially on stairs; conversely, model-based foothold planners encode contact feasibility and stability structure, but enforcing their hard constraints often induces conservative motion that limits speed. We present FastStair, a planner-guided, multi-stage learning framework that reconciles these complementary strengths to achieve fast and stable stair ascent. FastStair integrates a parallel model-based foothold planner into the RL training loop to bias exploration toward dynamically feasible contacts and to pretrain a safety-focused base policy. To mitigate planner-induced conservatism and the discrepancy between low- and high-speed action distributions, the base policy was fine-tuned into speed-specialized experts and then integrated via Low-Rank Adaptation (LoRA) to enable smooth operation across the full commanded-speed range. We deploy the resulting controller on the Oli humanoid robot, achieving stable stair ascent at commanded speeds up to 1.65 m/s and traversing a 33-step spiral staircase (17 cm rise per step) in 12 s, demonstrating robust high-speed performance on long staircases. Notably, the proposed approach served as the champion solution in the Canton Tower Robot Run Up Competition.
Abstract:Large Language Models (LLMs) demonstrate impressive performance across natural language tasks but incur substantial computational and storage costs due to their scale. Post-training structured pruning offers an efficient solution. However, when few-shot calibration sets fail to adequately reflect the pretraining data distribution, existing methods exhibit limited generalization to downstream tasks. To address this issue, we propose Function-Aware Neuron Grouping (FANG), a post-training pruning framework that alleviates calibration bias by identifying and preserving neurons critical to specific function. FANG groups neurons with similar function based on the type of semantic context they process and prunes each group independently. During importance estimation within each group, tokens that strongly correlate with the functional role of the neuron group are given higher weighting. Additionally, FANG also preserves neurons that contribute across multiple context types. To achieve a better trade-off between sparsity and performance, it allocates sparsity to each block adaptively based on its functional complexity. Experiments show that FANG improves downstream accuracy while preserving language modeling performance. It achieves the state-of-the-art (SOTA) results when combined with FLAP and OBC, two representative pruning methods. Specifically, FANG outperforms FLAP and OBC by 1.5%--8.5% in average accuracy under 30% and 40% sparsity.
Abstract:Achieving efficient and robust whole-body control (WBC) is essential for enabling humanoid robots to perform complex tasks in dynamic environments. Despite the success of reinforcement learning (RL) in this domain, its sample inefficiency remains a significant challenge due to the intricate dynamics and partial observability of humanoid robots. To address this limitation, we propose PvP, a Proprioceptive-Privileged contrastive learning framework that leverages the intrinsic complementarity between proprioceptive and privileged states. PvP learns compact and task-relevant latent representations without requiring hand-crafted data augmentations, enabling faster and more stable policy learning. To support systematic evaluation, we develop SRL4Humanoid, the first unified and modular framework that provides high-quality implementations of representative state representation learning (SRL) methods for humanoid robot learning. Extensive experiments on the LimX Oli robot across velocity tracking and motion imitation tasks demonstrate that PvP significantly improves sample efficiency and final performance compared to baseline SRL methods. Our study further provides practical insights into integrating SRL with RL for humanoid WBC, offering valuable guidance for data-efficient humanoid robot learning.
Abstract:For full-size humanoid robots, even with recent advances in reinforcement learning-based control, achieving reliable locomotion on complex terrains, such as long staircases, remains challenging. In such settings, limited perception, ambiguous terrain cues, and insufficient adaptation of gait timing can cause even a single misplaced or mistimed step to result in rapid loss of balance. We introduce a perceptive locomotion framework that merges terrain sensing, gait regulation, and whole-body control into a single reinforcement learning policy. A downward-facing depth camera mounted under the base observes the support region around the feet, and a compact U-Net reconstructs a dense egocentric height map from each frame in real time, operating at the same frequency as the control loop. The perceptual height map, together with proprioceptive observations, is processed by a unified policy that produces joint commands and a global stepping-phase signal, allowing gait timing and whole-body posture to be adapted jointly to the commanded motion and local terrain geometry. We further adopt a single-stage successive teacher-student training scheme for efficient policy learning and knowledge transfer. Experiments conducted on a 31-DoF, 1.65 m humanoid robot demonstrate robust locomotion in both simulation and real-world settings, including forward and backward stair ascent and descent, as well as crossing a 46 cm gap. Project Page:https://ga-phl.github.io/
Abstract:The prevalence of real-world multi-view data makes incomplete multi-view clustering (IMVC) a crucial research. The rapid development of Graph Neural Networks (GNNs) has established them as one of the mainstream approaches for multi-view clustering. Despite significant progress in GNNs-based IMVC, some challenges remain: (1) Most methods rely on the K-Nearest Neighbors (KNN) algorithm to construct static graphs from raw data, which introduces noise and diminishes the robustness of the graph topology. (2) Existing methods typically utilize the Mean Squared Error (MSE) loss between the reconstructed graph and the sparse adjacency graph directly as the graph reconstruction loss, leading to substantial gradient noise during optimization. To address these issues, we propose a novel \textbf{D}ynamic Deep \textbf{G}raph Learning for \textbf{I}ncomplete \textbf{M}ulti-\textbf{V}iew \textbf{C}lustering with \textbf{M}asked Graph Reconstruction Loss (DGIMVCM). Firstly, we construct a missing-robust global graph from the raw data. A graph convolutional embedding layer is then designed to extract primary features and refined dynamic view-specific graph structures, leveraging the global graph for imputation of missing views. This process is complemented by graph structure contrastive learning, which identifies consistency among view-specific graph structures. Secondly, a graph self-attention encoder is introduced to extract high-level representations based on the imputed primary features and view-specific graphs, and is optimized with a masked graph reconstruction loss to mitigate gradient noise during optimization. Finally, a clustering module is constructed and optimized through a pseudo-label self-supervised training mechanism. Extensive experiments on multiple datasets validate the effectiveness and superiority of DGIMVCM.
Abstract:The generalization capability of deepfake detectors is critical for real-world use. Data augmentation via synthetic fake face generation effectively enhances generalization, yet current SoTA methods rely on fixed strategies-raising a key question: Is a single static augmentation sufficient, or does the diversity of forgery features demand dynamic approaches? We argue existing methods overlook the evolving complexity of real-world forgeries (e.g., facial warping, expression manipulation), which fixed policies cannot fully simulate. To address this, we propose CRDA (Curriculum Reinforcement-Learning Data Augmentation), a novel framework guiding detectors to progressively master multi-domain forgery features from simple to complex. CRDA synthesizes augmented samples via a configurable pool of forgery operations and dynamically generates adversarial samples tailored to the detector's current learning state. Central to our approach is integrating reinforcement learning (RL) and causal inference. An RL agent dynamically selects augmentation actions based on detector performance to efficiently explore the vast augmentation space, adapting to increasingly challenging forgeries. Simultaneously, the agent introduces action space variations to generate heterogeneous forgery patterns, guided by causal inference to mitigate spurious correlations-suppressing task-irrelevant biases and focusing on causally invariant features. This integration ensures robust generalization by decoupling synthetic augmentation patterns from the model's learned representations. Extensive experiments show our method significantly improves detector generalizability, outperforming SOTA methods across multiple cross-domain datasets.